Current Issue
Winter 2014
BMM Current Issue
Download PDF
ZOOM
 
Small Wonder
Partnering with an engineer, a pathologist goes in a new direction.

The yellow-and-black signs outside Dr. Agnes Kane’s pathology laboratory read “CAUTION: Cancer hazard.” Nodding at the ominous-looking postings, Kane explains, “because of their toxicity similar to asbestos, we handle these materials as if they were carcinogens.”  Meanwhile, across the Providence River, at the School of Engineering, Professor Robert Hurt is hard at work creating the very materials that Kane is so gingerly studying: nanoparticles.

Smaller than 1,000th the width of a human hair—so small that you need an electron microscope to see them— nanoparticles’ practical applications may be enormous: making implants more biocompatible; diagnosing and treating cancers; cleaning up oil spills. That said, the history of science is filled with promising solutions that create additional unforeseen problems of their own. No one is more aware of this than Kane, chair of Brown’s Department of Pathology and Laboratory Medicine. She has spent her career on, and helped guide the Department’s focus on, the human health effects of environmental and occupational exposures. She and Hurt tick off some examples demonstrating this law of unintended consequences:

“Corn ethanol,” says Hurt, referring to the fact that 40 percent of the corn grown in America is used to create this alternative fuel. “Then you raise the corn prices for food.”

Kane nods. “Use more fertilizer? Contaminate our water supplies. There’s always these trade-offs.”

One of modern history’s most devastating trade-offs was of a common mineral that makes an excellent flameretardant building material. Its usefulness notwithstanding, asbestos can cause devastating cancers and fatal lung problems both for those who mine it and for those who live and work in buildings that contain it.

Small, Novel...but Safe

From the time Kane joined Brown’s pathology department as a founding member in 1982, she has studied the mechanisms by which asbestos injures cells and causes cancer. When, in 2004, she gave a talk about this research to a group of colleagues, Hurt approached her afterward. The asbestos fibers that Kane showed in her talk reminded Hurt of the carbon nanofibers he had been developing. “We were not working
on health effects at the time,” Hurt says. “We were doing traditional nanoscience, trying to make new things that had never been made before.”
  Next Page
 
 
Comment on this Article    Email this Article     Print this Article    Bookmark and Share